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ABSTRACT

Image compression is an area of data compression which looks to exploit various

redundancies that exist within images to reduce storage and transmission require-

ments. In information critical applications such as professional photography, medical

diagnostics, and remote sensing, lossless image compression may be used to ensure

the original data can be restored at a later time.

In this work, a lossless compression framework is proposed which incorporates

Convolutional Neural Networks (CNN s) to predict wavelet detail coefficients from

coefficients within neighboring subbands. The main premise of the proposed frame-

work is that information which can be recovered at the decoder via CNN prediction

can be excluded from the compressed codestream, resulting in reduced file sizes.

An end-to-end encoder and decoder is implemented to test the validity of the

proposed, model and compression performance is compared with current state of

the art methods.
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CHAPTER 1

INTRODUCTION

Image compression, an area of data compression, looks to reduce the data re-

quirements associated with transferring and storing digital images; it may be divided

into two general categories known as lossless and lossy. In lossless compression, we

require that the original image data be recoverable without error during decompres-

sion; whereas in lossy compression, we introduce a controlled level of error into the

data in order to achieve greater compression performance. Applications in which

communication bandwidth or storage capacity take precedence over preservation of

image contents will generally use lossy compression. Lossless compression is seen in

applications where any loss of information within an image is not tolerable. These

include some areas of medical imaging, remote sensing, and image archiving. Over

the last two decades, researchers in both industry and academia have proposed nu-

merous lossless compression frameworks to meet this demand, some of which include:

CALIC (1996) [1], JPEG-LS (1999) [2], Lossless JPEG2000 (2000) [3], GLICBAWLS

(2001) [4], and FLIF (2015) [5].

In recent years, machine learning has brought about many breakthroughs in dif-

ferent areas of science. In particular, deep learning fueled by significant growth of

computational power, and availability of large datasets, has improved the state-of-

the-art in many speech and image processing applications as well as other areas

of science such as genomics. While these breakthroughs have occurred in many

areas, the impact of deep learning techniques in image and video compression has

so far been relatively modest. In large, work in this area has focused on develop-

ing generative image models, which can be used to predict small pixel patches [6]

[7]. Compression is then achieved by lossless predictive coding, in which smaller

magnitude residual values are coded in place of original pixel intensities. These

models show an impressive ability to understand past and predict future structure
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within an image. Unfortunately, there is a lack of end-to-end implementation of

these frameworks to compare with existing standards.

In this work, we propose a lossless compression framework which uses CNNs to

make predictions of wavelet coefficients from coefficients within neighboring sub-

bands. Information which can be recovered later at the decoder using CNN pre-

diction can be excluded from the codestream resulting in reduced file sizes. We

show that a CNN may be developed which, on average, produces predictions whose

corresponding prediction errors are easier to compress than original coefficients. An

end-to-end encoder and decoder are implemented to validate the model and com-

pression performance is compared with current state of the art methods.

1.1 Chapter Overview

This paper is organized as follows: Chapter 2 will introduce necessary concepts

which will be discussed throughout this thesis. Chapter 3 gives an overview of the

proposed compression framework, along with pseudo-code which can be used for

implementation. In Chapter 4 we explore several CNN prediction models, outline a

baseline prediction framework, and implement an end-to-end encoder and decoder.

Concluding remarks and future work are discussed in Chapter 5.



13

CHAPTER 2

BACKGROUND

2.1 Lossless Image Compression

Lossless image compression is an area of data compression which looks to min-

imize communication and storage requirements of digital images without loss of

information. In order to accomplish this task, lossless compression algorithms ex-

ploit various redundancies which exist in image data.

Spatial redundancy regards the strong correlations which exist among neighbor-

ing pixel values in natural images. After decorrelation, many data samples will be

small in magnitude requiring fewer bits on average to code than original pixel values.

Common decorrelation procedures include predictive coding (e.g. Differential Pulse

Code Modulation [8]) and transform coding (e.g. Discrete Cosine Transform [9] and

Discrete Wavelet Transform [10]).

Coding redundancy results from non-uniform representation of sample values

within image data. Particularly after decorrelation, data samples will take values

that are small in magnitude with far greater frequency than larger magnitude values.

It becomes inefficient to use the same number of bits to represent each value, instead

one should code frequent values with fewer bits than less common ones. The process

of removing these redundancies is referred to as entropy coding, and is typically one

of the last steps in a compression algorithm. Examples of entropy coding techniques

include Huffman Coding [11], Run-Length Coding [12], and Arithmetic Coding [13].

2.2 Compression Performance

The performance of a lossless image compression algorithm is determined by its

ability to reduce the number of bits required to uniquely represent an image. A



14

natural way to express this is by compression ratio (Equation 2.1), which is a ratio

of bit-stream lengths before and after compression.

compression ratio =
DrDcB

LC

(2.1)

The numerator in Equation 2.1 gives the uncompressed bit-stream length, where

Dr and Dc respectively represent the number of B bit pixels in each image row and

column. The denominator, LC , represents the length of the compressed bit-stream

in bits after coding by a given compression algorithm.

While compression ratio is easy to understand, it is a unit-less relative measure

that does not indicate actual storage requirements of a compressed bit-stream. Bit-

rate (R) is an absolute measure indicating on average the number of bits used to

code individual data samples. For images, pixels are considered individual samples

and bit-rate is described in bits-per-pixel (bpp) (Equation 2.2).

R =
LC

DrDc

bits/pixel (2.2)

Throughout this thesis, bit-rate will be used to measure compression perfor-

mance.

2.3 Compression and Entropy

For a discrete signal, X, which takes values in the set AX ; a fixed length binary

code which uniquely represents each value in AX will have a minimum codeword

length of L = log2 [|AX |]; where |AX | denotes the cardinality of the setAX . However

if the values in AX follow a non-uniform distribution fX(x), so that certain values

occur more frequently than others, a variable length prefix code may be constructed

which on average requires fewer than L bits to uniquely represent each value. This

average codeword length is lower-bounded by a value known as entropy [14], which

is defined as:

H(X) , −
∑
x∈AX

fX(x)log2[fX(x)] (2.3)
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In general, signals which take a small number of values with high probability will

have lower entropy and can be represented with fewer bits on average than signals

who take a large number of values with low probability. For the extreme case where

values are uniformly distributed with fX(x) = 1
|AX |

, entropy will reach its maximum

of log2[|AX |] and no benefit is seen when using a variable length code.

Pixel intensities in typical grayscale image are assumed to follow an approximate

uniform distribution, making them difficult to code at bit-rates significantly lower

than L. However as mentioned in Section 2.1, pixels contain a large amount of

spatial redundancy that can be removed. The resulting equivalent signal will contain

primarily small magnitude samples (lower entropy) making it easier to compress. In

the next section, we introduce the Discrete Wavelet Transform which has been used

as a tool to remove redundancies in several high performance image and video codecs

such as JPEG2000 [3] and CineForm [15], and is also incorporated in the proposed

framework.

2.4 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT ) [10] [16] is a joint space-frequency trans-

form which decomposes a discrete-time signal into frequency and spatially localized

subband components. The DWT is used in image compression to exploit spatial cor-

relations among signal samples at various scales; with small scale (high frequency)

components capturing short term correlations among neighboring samples and large

scale (low frequency) components describing long term correlations which span over

several signal samples.

The DWT of a discrete-time signal x may be computed by passing it through a

perfectly reconstructing FIR filter bank. This involves convolution of x with a se-

ries of low and high pass analysis filters (H̃0 and H̃1), followed by down-sampling to

obtain critically sampled subbands (yL and yH). Signal reconstruction is achieved

by up-sampling each subband, applying a series of synthesis filters (H0 and H1),

and summing the results. The high computational costs of convolution can make
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this approach impractical for large signals. An alternative method is proposed in

[17], which simplifies the DWT into a set of lifting steps. In this section, we derive

the lifting steps for the Cohen-Daubechies-Feauveau (CDF) 5/3 wavelet transform

[18] used in the lossless pipeline of JPEG2000. As in [17], we develop this trans-

form through analysis in the spatial domain, which may provide a more intuitive

understanding of the DWT than a Fourier analysis approach.

Figure 2.1: Implementation of the 1-D DWT using a 2-channel perfectly recon-
structing FIR filterbank.

The first step is to split x into the even and odd signals xe[n] = x[2n] and

xo[n] = x[2n + 1], respectively. It is apparent that these signals are related and

will show some correlations. Thus, a predictor function P may be designed to make

predictions of xo using xe. If P is well designed, then an error signal yd = xo−P (xe)

may be computed which is sparse, only taking large values in regions where xe and

xo become uncorrelated, resulting in bad predictions. These uncorrelated events

will occur in regions where x contains transient events, in which rapid variation

occurs among neighboring sample values. If P is chosen to make its prediction by

taking the average of the neighboring values in xe then the prediction error signal

is computed as:

yd[n] = xo[n]− xe[n] + xe[n+ 1]

2
(2.4)

x may now be represented in terms of xo and yd, where yd is a decorrelated high-

pass subband of x. yd will be sparse when x contains a small number of transient

events, indicating that fewer bits on average may be required to store x in this new
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representation. As mentioned in the introduction of this section, the DWT looks

to decompose the input signal into frequency localized subbands. Currently, xe has

frequency contents that overlap with yd and contain a large amount of aliasing due to

subsampling. Daubechies and Sweldens [17] proposed a second lifting step to reduce

this aliasing. A smoothing operator U is introduced which is used to calculate a

smoothed signal ya = xe + U(yd) given by:

ya[n] = xe[n] +
yd[n− 1] + yd[n]

4
(2.5)

ya is a low-pass subband, containing a low resolution approximation of x for which

smoothing has been applied to reduce aliasing. x may now be represented in terms

of ya and yd; ya is called the approximation subband, and contains approximation

coefficients, while yd is called the detail subband and contains detail coefficients.

Equations 2.4 and 2.5 represent what are called predict and update lifting steps

and together form the lifting implementation of the CDF 5/3 DWT (omitting any

normalizations). We may modify our notation so that the predict and updates steps

are equivalently given by:

Predict : yH [n] = x[2n+ 1]− x[2n] + x[2n+ 2]

2
(2.6)

Update : yL[n] = x[2n] +
yH [n− 1] + yH [n]

4
(2.7)

where we have now chosen yL and yH to represent the approximation and detail

subbands, respectively, to emphasize their respective low and high-pass nature. In

theory, this transform may then be inverted by reversing the predict and update

steps as follows:

Update : x[2n] = yL[n]− yH [n− 1] + yH [n]

4
(2.8)

Predict : x[2n+ 1] = yH [n] +
x[2n] + x[2n+ 2]

2
(2.9)
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In a practical implementation, the potential introduction of floating-point values

results in its reversibility being limited by the precision used to perform the compu-

tations. For image compression, requiring floating point operations would not allow

for lossless compression to be achieved. It is then desirable to obtain a transform

that maps integers to integers so that no issues related to floating-point values arise.

This is easily achieved by introducing rounding into the lifting steps above. With

this modification we obtain the Reversible CDF 5/3 DWT :

Prediction : yH [n] = x[2n+ 1]−
⌊
x[2n] + x[2n+ 2]

2
+

1

2

⌋
(2.10)

Update : yL[n] = x[2n] +

⌊
yH [n− 1] + yH [n]

4
+

1

2

⌋
(2.11)

Again by inverting the lifting steps the original signal values may be recovered:

Update : x[2n] = yL[n]−
⌊
yH [n− 1] + yH [n]

4
+

1

2

⌋
(2.12)

Predict : x[2n+ 1] = yH [n] +

⌊
x[2n] + x[2n+ 2]

2
+

1

2

⌋
(2.13)

This is the wavelet transform which will form the basis of the proposed compres-

sion framework.

2.4.1 2-D DWT

For applications in digital imaging, the DWT may be separably extended to two

dimensions by first applying a 1-D DWT to each image row, followed by a 1-D DWT

of each resulting column. This procedure is demonstrated in Figure 2.2 for a single

component image, resulting in one approximation (LL) and three detail (HL,LH

and HH) subbands. The LL subband represents a low resolution approximation

of the original image, while the detail subbands individually give edge information

in the horizontal (HL), vertical (LH), and diagonal (HH) directions. The detail

subbands will be sparse and biased towards zero, only taking on large values in
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areas corresponding to rapid change in pixel intensity. This results in the wavelet

representation of an image to be more compressible than the original pixel values.

Figure 2.2: Implementation of the 2-D DWT on a single component image.

To achieve greater sparsity, a multi-level 2-D DWT may be implemented by

recursively decomposing the approximation subband (Figure 2.3). These subbands

may be organized into decomposision levels, denoted by Dn, where each decomposi-

tion level contains the subbands which are produced during a given decomposition

step (e.g. LLn, HLn, LHn, HHn). We note that even though the approximation

subband (LLn) in a given decomposition level (Dn) may be decomposed after addi-

tional decomposition steps, we still consider it part of the repsective decomposition

level after the full multi-level transform has been applied. This understanding will

be convineient in later sections when describing the CNN prediction procedure. It

should be understood that approximation subbands which are decomposed during

the multi-level transform will not be included in the codestream. Throughout this

thesis, subbands which are contained within the same decomposition level will be

referred to as neighboring subbands (e.g. LL1,HL1,LH1,HH1).



20

Figure 2.3: N = 3 level DWT on an image resulting in 3 · 5 + 1 = 16 subbands.

2.5 Predictive Coding

Predictive coding is a technique used extensively in image compression to remove

spatial redundancies which exist among neighboring pixel values. In a more general

case, we consider a sequence of arbitrary sample values x, a predictor function F

and a set of causal information Ix associated with x; a residual signal may then be

computed by r = x−F (Ix). If F is a good predictor, the values in r will be tightly

distributed around zero, leading to higher compressibility.

While the DWT is able to effectively decorrelate neighboring image pixels, the

resulting wavelet coefficients are not independent and may have some remaining

interdependencies which can be exploited to achieve greater compression perfor-

mance. To achieve this, we wish to design a new predictor that can be used to make

predictions of wavelet coefficients given adequate causal information. Due to the

state-of-the-art performance demonstrated by neural networks in several prediction

and regression tasks over the last decade, a neural network is chosen as the basis of

our predictor.
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2.6 Artificial Neural Networks

Artificial Neural Networks (ANN s) are computational models, which processes

data using a large number of interconnected processing units called neurons. A basic

ANN can be described by Equation 2.14

y = W2f(W1x + b1) + b2 (2.14)

where x is an input vector, W1 and W2 are linear transforms, b1 and b2 are bias

vectors, f is a element-wise non-linear function, and y is the resulting output vector.

Augmenting the otherwise linear transform with f , allows representation of non-

linear relationships between the input and output vectors. Compared to a standard

linear model, the non-linear model is better suited for many real world regression

tasks, for which the data is highly non-linear.

Letting x = [x1, ..., xN ]T , and y = [y1, ..., yP ]T , this transformation can be repre-

sented by a directed graph, organized into layers of nodes, with weighted connections

joining nodes within adjacent layers. This structure is depicted in Figure 2.4, where

each node represents an individual neuron, with nl
i denoting the ith neuron within

the lth layer. Each black arrow represents a weighted connection between neurons,

where labels have been omitted from Figure 2.4 to prevent clutter. We assign the

weight wl
i,j to the weighted connection joining the ith neuron in the lth layer, to the

jth neuron in the (l − 1)th layer. These weights are defined within the transform

matrices, W1 and W2, and determine the input-output relationship of the ANN.

Each neuron can be seen as taking the weighted sum of its inputs, and applying a

non-linear function f to produce an output. ANNs with this architecture are often

referred to as fully connected, due to the interconnectivity of neurons within adja-

cent layers. The structure of each neuron within a fully connected ANN is given in

Equation 2.5.
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Figure 2.4: Graph representation of the ANN defined in Equation 2.14.

Figure 2.5: Architecture of neurons within an ANN.

Certain applications will require a model which can represent more complex non-
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linear input-output relationships, this may be achieved through adding additional

layers to the ANN model. The basic model in Equation 2.14 may be extended to

the general form given in Equation 2.15

y = WL(...f(W2f(W1x + b1) + b2)) + ...) + bL (2.15)

where there are L linear transforms (W1, ...,WL), each of which is augmented with

a non-linear function f , with the exception of the last transform WL. As a directed

graph, this is given in Figure 2.6.

Figure 2.6: Graph representation of a simple ANN .

For a typical regression problem, we are given a set of input vectors, {xp =

[xp,1, ..., xp,N ], p = 1, ..., P}, along with a set of corresponding output vectors (or

labels), {yp = [yp,1, ..., yp,M ], p = 1, ..., P}. We wish to find an ANN model which

will result in the minimum average error when attempting to map each input (xp)

to each output (yp). For a fixed network structure (predefined number of layers

and neurons), we define the function FW as the ANN parameterized by the set of

weights W. This minimization may be given by Equation 2.16
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arg min
W

{
1

P

P∑
p=1

E(yp, ŷp)

}
(2.16)

where E(, ) denotes a chosen error function, and ŷp = FW(xp) denotes the ANN

output for a given input xp. This minimization is solved though an iterative algo-

rithm called Stochastic Gradient Descent (SGD) [19]. At each minimization step,

the ANN is presented with a batch of training examples (sp, b = 1, ..., B); where

each training example consists of an input, xb, and corresponding output, yb, so that

sb = (xb,yb). Using the batch of training examples, the gradient of the error function

(E) is approximated using a technique called backwards propagation of errors [20].

This gives us the partial derivative of the error with respect to each network weight

( ∂E
∂wi,j

). Each weight is then updated to minimize the error by moving opposite the

error gradient, this is given by Equation 2.17

wl
i,j = wl

i,j − η
∂E

∂wl
i,j

(2.17)

where η is called the learning rate, and determines the magnitude of the weight

update. This procedure is performed for a predefined number of iterations, or until

the error can no longer be minimized

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a form of ANN , where vector trans-

forms are replaced with convolutional filter banks. Networks with this architecture

have been successful in numerous applications involving image regression, where the

high dimensionality makes training efficiently traditional fully connected networks

difficult. For this reason, we choose CNN s for subband to subband regression, which

shares a nearly identical construction to many image to image regression problems

(e.g. super-resolution).

The general structure of a CNN is given in Figure 2.7, and of each neuron in

Figure 2.8. Each neuron (nl
i) has an associated filter (wl

i), and the neuron output (yli)

is calculated by convolving this filter with the input (yl−1), followed by application of
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an element-wise non-linear function (f). The value of the weights within each filter

will determine the output of the CNN. This makes the filter weights analogous to the

linear transform weights in the previously dicussed ANN architecture. The neuron

input will be an array with spatial dimensions DSl−1
×DSl−1

, with DCl−1
channels.

The output will be a single channel array, with spatial dimensions DSl
×DSl

. The

dimensions of the output array will depend on the filter dimensions, as well as the

type of convolution used.

The basic setup of a regression problem for CNN is the same as for a traditional

ANN, with the weights within the convolutional filters are also trained using SGD.

The previously discussed equations can be applied directly if the CNN output and

associated label are linearized.

Figure 2.7: Structure of a convolutional layer.
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Figure 2.8: Architecture of neurons within a CNN.
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CHAPTER 3

PROPOSED MODEL

3.1 Encoding

The proposed encoding framework (Figure 3.1) consists of three primary steps;

DWT, CNN Prediction, and Entropy Coding. During the DWT step, an input image

is decomposed into wavelet subbands.

This is followed by CNN Prediction, in which a CNN encoding structure

(CNNenc) predict detail coefficients using coefficients within neighboring subbands;

the output of this structure is a encoding subband, which contains the information

which will be included in the compressed codestream. Finally, a block entropy coder

is used to produce a compressed codestream. These steps are detailed below in

Sections 3.1.1 - 3.1.3 and the full encoding procedure is given in Algorithm 1.

Figure 3.1: Proposed encoding framework.
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3.1.1 DWT

A single component input image is decomposed into wavelet subbands using a

reversible (integer) DWT [21]. Decomposition is performed for a user defined N

decomposition steps to produce subbands organized into decomposition levels (See

Section 2.4).

3.1.2 CNN Prediction

For each decomposition level (Dn, n = 1, ..., N), the corresponding CNN encod-

ing structure (CNNdecn) is used to generate encoding subbands (HLE
n , LH

E
n , HH

E
n );

with each encoding subband potentially containing a mixture of original coefficients,

and prediction residuals. Within CNNencn , a series of CNN s is used to produce

subband predictions (HLP
n , LH

P
n , HH

P
n ), and residual subbands (HLR

n , LH
R
n , HH

R
n )

are determined as the difference between original and predicted coefficients. Cor-

responding original and residual subbands are then assessed in C × C coefficient

blocks; the block with the lower entropy (Equation 2.3) between the two is inserted

into the corresponding encoding subband. A 1-bit flag (called the block decision

flag) is sent for each block to notify the decoder of the decision made during en-

coding. This procedure prevents codestream expansion in situations where CNN

prediction is poor, resulting in residual values which are more difficult to compress

than original coefficients. This procedure is called Subband Block Encoding (SBE),

and is detailed in Algorithm 2.

We note that no specific CNN structure is defined, the only requirement is that

a corresponding CNN decoding structure (CNNdec) is made available during decod-

ing. The decoding structure should invert the steps of the decomposing structure,

without requiring any information not readily available at the decoder. In Sec-

tion 4.1, we explore various CNN configurations to determine an optimal prediction

framework. Baseline encoding and decoding CNN structures are then developed in

Section 4.4.
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3.1.3 Entropy Coding

The blocks within each encoding subband (HLE
n , LH

E
n , HH

E
n , n = 1, ..., N) are

individually entropy coded. Additionally, the approximation subband (LLN) is

entropy coded.

Algorithm 1 Encoding procedure
1: Variables:

2: X ← Input image

3: N ← Number of decomposition steps

4: B ← Coding Block Size

5: CS ← Compressed codestream

6:
7: procedure Encode(X,N,B)

8: for n in 1 to N do

9: LLn, HLn, LHn, HHn ← DWT(LLn−1)

10:
11: HLE

n , LHE
n , HHE

n ← CNNencn (LLn, HLn, LHn, HHn)

12:
13: CS ← {CS, block coder(HLC

E)}
14: CS ← {CS, block coder(LHC

E )}
15: CS ← {CS, block coder(HHC

E )}
16: end for

17:
18: CS ← {CS, block coder(LLN )}
19: end procedure

Notes:

1. CS ← {CS,X} appends the bits in X to the codestream CS
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Algorithm 2 Subband Block Encoding (SBE) Procedure

1: Variables:

2: CS ← Codestream

3: X ← Original Subband

4: X̂ ← Subband Prediction

5: XE ← Encoding Subband

6: C ← Coding Block Size

7:
8: procedure SBE(CS,X,X̂,C)

9: XR ← X − X̂ . Prediction Residuals

10:
11: for nr in 0 to X.rows

C
do

12: for nc in 0 to X.columns
C

do

13: Xblock ← X[C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]

14: XR
block ← XR[C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]

15: if entropy(XR
block) < entropy(Xblock) then

16: XE .bdf [nr, nc]← 1 . Block decision flag

17: XE [C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]← XR
block

18: else

19: XE .bdf [nr, nc]← 0 . Block decision flag

20: XE [C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]← Xblock

21: end if

22: end for

23: end for

24: end procedure

Notes:

1. X and XR will have the same dimensions, this dimension is assumed to be an integer power of C.

2. X.rows and X.columns are methods which return the number of rows and columns in X respectively.

3. CS ← {CS, x} appends the bits in x to the codestream CS

3.2 Decoding

The decoding pipeline is comprised of three primary steps (Figure 3.2); Decod-

ing, CNN Prediction / Subband Reconstruction, and Inverse DWT. Entropy coding

is reversed during decoding to reproduce the approximation and encoding subbands.

CNN Prediction and Subband Reconstruction is then performed, where original sub-

bands are recovered using a CNN decoding structure (CNNdec). Finally, an inverse

DWT is applied to achieve image reconstruction.
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Figure 3.2: Proposed decoding framework.

Starting from the highest encoded decomposition level (DN), the approxi-

mation (LLN) and corresponding encoding subbands (HLE
N , LH

E
N , HH

E
N) are fed

into the appropriate CNN decoding structure (CNNdecN ). Subband predictions

(ĤLn, L̂Hn, ĤHn) are reproduced using an identical series of CNN s as was used

during encoding. This is followed by Subband Block Decoding, in which encoding

and prediction subbands are assessed in the same C×C coefficient blocks as during

encoding. Using the block decision flags as reference, the encoding and prediction

block values will be combined when encoding block values are prediction residuals.

The prediction block is otherwise discharged, as the encoding block will already con-

tain original coefficients. After all blocks have been processed, the original subband

will be reconstructed. An inverse DWT is then applied to recover the approximation

subband (LLN−1) corresponding to the next lowest decomposition level (DN−1). The

corresponding detail subbands (HLN−1, LHN−1, HHN−1) are similarly recovered us-

ing an additional CNN decoding structure (CNNdecN−1
), and an inverse DWT is

applied to recover the approximation subband (LLN−2) at the next lowest decom-

position level (DN−2). This procedure is repeated until the subbands at the lowest
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decomposition level (D1) are recovered (LL1, HL1, LH1, HH1), after which a final

inverse DWT is applied to reconstruct the image.

Algorithm 3 Decoding procedure
1: Variables:

2: CS ← Compressed codestream

3: N ← Number of decomposition steps

4: X ← Reconstructed Image

5:
6: procedure Decode(CS)

7: for n in N to 1 do

8: HLn, LHn, HHn ← CNNrecn (LLn, HLE
n , LHE

n , HHE
n )

9: LLn−1 ← IDWT(LLn, HLn, LHn, HHn)

10: end for

11: X ← LL0

12: end procedure

Algorithm 4 Subband Block Decoding (SBD) Procedure

1: Variables:

2: X̂ ← Prediction Subband

3: XE ← Encoding Subband

4: C ← Block Size

5: X ← Original Subband

6:
7: procedure SBD(X̂,XE ,C)

8: for nr in 0 to X̂.rows
C

do

9: for nc in 0 to X̂.columns
C

do

10: Xblock ← XE [C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]

11:
12: if XE .bdf [nr, nc] == 1 then

13: Xblock ← Xblock + X̂[C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]

14: end if

15:
16: X[C · nr : C · (nr + 1)− 1, C · nc : C · (nc + 1)− 1]← Xblock

17: end for

18: end for

19: end procedure

Notes:

1. X.rows and X.columns are methods which return the number of rows and columns in X respectively. X and XRR will

have the same dimensions

2. C represents the coding block size

3. XE .bdf(, ) returns the block decision flag for block (nr, nc)
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 CNN Prediction

In this section, we consider multiple CNN prediction models for integration

within the previously discussed end-to-end compression framework. A good pre-

diction model will result in sparse prediction residuals, effectively minimizing the

information which much be included in the compressed codestream. We divide these

models into three categories called one-to-one, many-to-one, or one-to-many based

on their input-output configuration (Figure 4.1).

In the one-to-one model, a single subband is passed as input to a CNN to

generate a prediction of a single neighboring subband. For this, we propose a CNN

which takes an approximation subband as input, and produces a prediction of a

single neighboring detail subband as output. A unique CNN may be trained to

produce a prediction of each detail subband within a given decomposition level;

approximation-detail subband interdependencies can then be removed by replacing

detail coefficients with prediction residuals.

The many-to-one model passes multiple subbands as CNN inputs to generate

a prediction of a single neighboring subband. For this, we extend the proposed

one-to-one model by passing one or more detail subbands as CNN inputs alongside

the approximation subband. The prediction of a single neighboring detail sub-

band is generated as the output. With this extension, we gain the ability to ad-

dress approximation-detail subband interdependencies in addition to detail-detail

subband interdependencies. Greater prediction performance may be seen over the

one-to-one model when there is appreciable redundancy between neighboring detail

subbands.

The one-to-many model takes as input a single subband and provides predictions
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of multiple subbands as outputs. Similar to the one-to-one model, a single approx-

imation subband is passed as CNN input; but in this model, the CNN is trained

to simultaneously produce predictions of all three neighboring detail subbands as

outputs. Because predictions of all three detail subbands may be produced using

a single CNN, this model has a clear computational advantage over the one-to-one

model. Additionally, training the CNN to make collective predictions may allow

it to learn relationships among neighboring detail subbands that can be exploited

to produce better predictions, giving it some of the advantages of the many-to-one

model. On the contrary, it is possible that a degradation in performance may be

seen when the CNN is not able to sufficiently capture and isolate the non-linear

relationship between the input and each output.

While the proposed models offer a large variety of potential CNN input-output

configurations, for the scope of this work we limit our attention to those provided in

Table 4.1. We train networks using each configuration and compare prediction

performance. Based off of these results, we then propose a baseline prediction

framework.

Table 4.1: CNN Prediction Configurations

Model Input Output

One-to-One LL HL
One-to-One LL LH
One-to-One LL HH

Many-to-One LL,LH HL
Many-to-One LL,HL LH
Many-to-One LL,HL,LH HH
One-to-Many LL HL, LH, HH

4.1.1 CNN Architecture

The chosen CNN architecture is inspired by those introduced in [22] and is

depicted in Figure 4.2. Each network consists of Nc convolutional layers, with each

layer containing Nf 3×3 filters, with the exception of the output layer which contains

Dcout 3× 3 filters. The parameters Dcin and Dcout determine the number of network
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Figure 4.1: Structure of the one-to-one (top), many-to-one (middle), and one-to-
many (bottom) prediction models.

inputs and outouts respectively and will vary based off of the configuration being

trained (Table 4.1). All hidden layers use ReLU activation, while no activation is

used in the output layer.

Figure 4.2: The proposed CNN structure where filter dimensions are given as
[width×height×channels×filter count].

As a baseline configuration, we find that good results may be obtained by setting

the parameters Nc and Nf to 10 and 64, respectively.
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4.1.2 CNN Training

All networks are implemented using the TensorFlow deep learning framework

[23]. Training is carried out for 40 epochs using the Adam optimizer [24] with

first and second moment estimates of 0.9 and 0.999, respectively. A batch size of

Nbatch = 64 with a fixed learning rate and L2 weight regularization (λ) of 0.0001 are

chosen based off of successful implementations of the CNN proposed in [25], which

shares a similar architecture.

When evaluating network output during training, we would like to minimize

the first-order entropy (Equation 2.3) of the prediction residuals. Unfortunately,

we do not have an analytical solution for the gradient of this function, and so

a surrogate must be used in its place. Both L1 (Mean-Absolute-Error) and L2

(Mean-Squared-Error) based loss functions have been used successfully in training

CNN for regression tasks [26][25]. For this reason, we consider both methods as

indirect metrics to minimize the first-order entropy. The L1 loss is insensitive to

outliers, but has multiple solutions and can be instable; while the L2 loss is stable

with a single solution, but is sensitive to outliers due to squaring of the error. We

train networks using both metrics to determine which is better suited for the task;

the batch-wise optimization for each is given in Equations 4.1 and 4.2 below.

arg min
W

{
1

Nbatch

Nbatch∑
i=1

‖yi − FW(xi)‖1 + λ‖W‖2

}
(4.1)

arg min
W

{
1

Nbatch

Nbatch∑
i=1

‖yi − FW(xi)‖2 + λ‖W‖2

}
(4.2)

where ‖·‖1 and ‖·‖2 respectively represent the L1 and L2 norms, FW the CNN pa-

rameterized by the filter weights W, xi the input samples, and yi the corresponding

labels.
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4.1.3 Training and Validation Data

Training data is generated by first decomposing each image within a train-

ing dataset into subband components using a reversible (integer) DWT [21]. For

a network to be trained for prediction at the nth decomposition level (Dn),

this requires an n-level decomposition to obtain the corresponding subbands

(LLn, HLn, LHn, HHn).

When training deep CNN architectures, using input samples with large spatial

dimensions can limit the batch size (Nbatch) that may be used before memory re-

sources are exhausted. A small batch size can result in an unstable error gradient

and poor network convergence [27]. To avoid these issues, we train on coefficient

patches rather than full wavelet subbands. We use training patches roughly twice

the size of the theoretical receptive field of neurons within the last layer of the CNN.

For the chosen network architecture, this leads to a patch size of 41× 41.

Figure 4.3: Spatially equivalent patches are extracted from each subband.

We train and test networks using data generated by decomposing images in three

different datasets, where a separate set of networks is trained for each dataset. The

first dataset is the RAISE Raw Image Database [28], which contains 8156 raw high

resolution natural scene images. The second is a pathology dataset containing 18,922

pathology images cropped from a dataset of 12 whole-slide pathology images. The
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last is a dataset of 23,259 high quality SVG computer graphic images from [29], for

usability each image is converted to high resolution PNG using Inkskape [30]. The

8-bit luminance component is extracted from each image, followed by cropping so

that all images are 2048 × 2048 pixels. We choose 4000 random images from each

dataset and split these into individual training and testing sets each containing 2000

images.

For each image in each training dataset, we extract patches as described above.

During testing, we perform prediction on full subbands and so no patching is per-

formed. We produce a dataset for each image set at decomposition levels 1 and 2

for a total of 6 training and 6 testing datasets, a summary of these is given in Table

4.2.

Table 4.2: Summary of Training Datasets

Dataset Set DWT
Level

Samples Sample
Dimensions

Natural (Training) 1 1152000 41× 41
Natural (Training) 2 288000 41× 41
Natural (Testing) 1 2000 1024× 1024
Natural (Testing) 2 2000 512× 512
Pathology (Training) 1 1152000 41× 41
Pathology (Training) 2 288000 41× 41
Pathology (Testing) 1 2000 1024× 1024
Pathology (Testing) 2 2000 512× 512
Graphics (Training) 1 1152000 41× 41
Graphics (Training) 2 288000 41× 41
Graphics (Testing) 1 2000 1024× 1024
Graphics (Testing) 2 2000 512× 512

The above datasets were chosen due to their unique characteristics; this will help

determine the versatility of the proposed prediction models. The natural images are

captured from a DSLR camera, while the pathology images are captured using

a high-resolution slide scanner; the graphics images are not captured, but rather

generated in a pure digital environment. Two example images from each dataset

are provided in Figures 4.4 - 4.6. From these figures, we see that both the natural and



39

pathology images contain sensor noise that is not apparent in the graphics images;

this results in large regions of constant intensity within the graphics images. The

HH1 subband of the pathology images is highly contaminated with noise, resulting

in no discernible structure. It is possible that predictions performed on this subband

will not yield a sparse residual that will result in any significant entropy reduction.

Figure 4.4: Example image and corresponding 2-Level DWT from the natural
dataset.
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Figure 4.5: Example image and corresponding 2-Level DWT from the pathology
dataset.
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Figure 4.6: Example image and corresponding 2-Level DWT from the graphics
dataset.

4.2 Network Convergence

Network convergence is assessed by looking at network loss over training epochs.

These results are provided in Figures 4.7 and 4.8 for networks trained on D1 and

D2, respectively. For networks trained in the one-to-one and many-to-one configura-

tions, this loss represents the average per coefficient error within a single subband.

Networks trained using the one-to-many configuration will have loss representing

average per coefficient error over multiple subbands. Networks trained using L1
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loss have error given in Mean Absolute Error (MAE), while networks trained us-

ing L2 loss have error given in Mean Squared Error (MSE). The entropy reduction

associated with CNN predictions is also calculated at each training epoch. This

is given as the difference in first-order entropy (Equation 2.3) between the original

coefficients and prediction residuals, so that a positive reduction indicates bit-rate

reduction. These plots are provided in Figures 4.9 and 4.10 for subbands in D1 and

D2, respectively.

The stability of convergence for each network shows a dependence on the choice

of loss function, training dataset, and decomposition level. Networks trained using

L2 loss show large instabilities which are not present in those trained with L1 loss.

Networks trained on the pathology datasets show the least instability, followed by the

natural datasets, and lastly the graphics datasets. To understand this, we look at

the distribution of wavelet coefficients within each dataset and across decomposition

levels (Figure 4.11). Coefficients within the natural and pathology datasets follow

an approximate Laplacian distribution. Coefficients within the graphics dataset are

very tightly centered around 0 with long tails; this results in a tight distribution with

a moderate variance. In natural photographs, coefficients with small magnitudes can

generally be attributed to noise and subtle textural details. This type of content is

not typically present in graphics images; as a result, smooth gradient regions result in

zero magnitude detail coefficients. Performing prediction on these regions will result

in a misleading evaluation of performance, as the network will just be mapping zeros

to zeros. This will manifest as large fluctuations in network loss, leading to network

convergence which appears unstable. On the other hand, smooth regions within

the natural and pathology datasets will contain noise, which the network will not

learn. Prediction on these regions will result in some level of error. This prevents the

fluctuations in loss as is seen in the graphics data. The difference in stability between

D1 and D2 can be attributed to the magnitude of coefficients between the subbands,

with higher magnitude coefficients being seen in the second level of decomposition.

Because L2 loss squares error, poor prediction will result in larger fluctuations in

the network loss; this leads to increased instability in network convergence.
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Minimization of the network loss results in an increase in entropy reduction

for all networks. Networks which use the many-to-one prediction model, in some

cases, show an appreciable gain in entropy reduction over those which use the one-

to-one model. This is especially apparent in networks trained at the first level of

decomposition on natural data; here we see an increase of approximately 0.19bpc on

average. This implies that the detail subbands within a given decomposition level

contain some level of redundancy.

Evaluation of entropy reduction within the one-to-many model is difficult, as a

single value is given for all subbands. Still, it can be observed that as network loss

decreases, the reduction in residual entropy increases. In Section 4.3, we evaluate

entropy reduction on a per-subband basis over full wavelet subband.
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Figure 4.7: Network loss over training epochs for networks trained on the first level
of decomposition.
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Figure 4.8: Network loss over training epochs for networks trained on the second
level of decomposition.
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Figure 4.9: Entropy reductions over training epochs for networks trained on the first
level of decomposition.
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Figure 4.10: Entropy reduction over training epochs for networks trained on the
second level of decomposition.
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Figure 4.11: Distribution of wavelet coefficient within the first two levels of wavelet
decomposition.

4.3 Reduction in Entropy

In this section, we consider the difference in entropy between the original wavelet

coefficients and prediction residuals over the validation datasets. In the following

analysis, entropy should be interpreted as bits-per-coefficient (bpc), since it is cal-

culated on a per-subband basis. Rather than calculating entropy using full subband

statistics, subbands are split into C × C blocks as described in the Subband Block

Encoding (SBE) (Algorithm 2) and the entropy is calculated individually for each

block. The subband entropy is then given as the average entropy over blocks, which

provides a more appropriate measure of potential bit-rate reduction since blocks are

entropy coded individually during encoding. The average entropy of blocks that are

coded by the SBE procedure are also compared to determine the bit-rate reduction

that may be attributed to choosing optimal blocks. In both the SBE procedure and

the entropy calculations as described above, we use a block size of C = 64.

A summary of entropy reduction forD1 andD2 in natural, pathology, and graphics



49

data is provided in Tables 4.3, 4.4, and 4.5, respectively. Distributions of entropy

reduction over D1 and D2 for natural data are given in Figures 4.12 and 4.13,

respectively. Similarly, distributions over pathology data are shown in Figures 4.14

and 4.15; and distributions over graphics data are shown in Figures 4.16 and 4.17.

The vertical red line in each figure represents the point in which no entropy reduction

occurs, so that codestream expansion occurs to the left of the line.

In all cases, one-to-one and one-to-many prediction models result in largely

similar results. This implies that the one-to-many model is sufficiently able to

capture and isolate the information about each subband. The one-to-many model

may then serve as an efficient alternative to the one-to-one prediction model. Since

using the one-to-many model does not result in performance improvements over the

one-to-one model, it is likely that the network is not exploiting any relationships

between subbands to generate its prediction.

In D1 for natural data, prediction using the many-to-one model results in sig-

nificant performance improvements (+0.22 bpc) over the other two models. For

pathology and graphics prediction, only modest gains are seen in D1 (+0.06 bpc in

both cases). In D2 for natural data, HL2 shows no improvement and LH2 shows

marginal improvement (+0.03 bpc), though modest improvements are seen in HH2

(+0.09 bpc). In pathology, HL2 shows no improvement, LH2 shows marginal im-

provements (+0.04 bpc), and HH2 show modest improvements (+0.1 bpc). For

graphics, HL2 shows marginal improvements (+0.02 bpc) and HH2 modest im-

provements (+0.14 bpc); interestingly, a performance reduction is seen of -0.04 bpc.

We point out that the results in Figure 4.8 and 4.10 indicate that the networks

used for graphics prediction were not fully converged after 40 training epochs. As

a result, these values may not completely reflect the optimal performance for the

network configuration.

The benefit of the SBE procedure is evident when comparing the distributions

before and after its application. The SBE procedure prevents any residual blocks

from being coded which will result in a increase in bitrate. As a result, the average

bitrate across an image is at most equal to that of the original coefficients. This
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benefit is seen most prominently in results for the one-to-one and one-to-many

models, though there are cases in which the many-to-one models also benefit. The

benefit of the SBE procedure may not be fully appreciated when only considering the

average entropy reduction, in Tables 4.3 - 4.5, the minimum and maximum entropy

reductions are also provided (shown as [minimum, maximum]). In a majority of

cases, the minimum reduction is negative, indicating an increase in bitrate; while

after SBE the minimum reduction is 0 bpc.
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Table 4.3: Entropy Reduction (bpc) - Natural

Input Output Original L1 L1+SBE L2 L2+SBE

LL1 HL1 3.50 0.23
[−0.12, 0.94]

0.24
[0, 0.94]

0.21
[−0.27, 0.95]

0.23
[0, 0.95]

LL1, LH1 HL1 3.50 0.42
[−0.06, 1.06]

0.42
[0.02, 1.06]

0.41
[−0.06, 0.98]

0.41
[0.01, 0.98]

LL1 HL1

(One-to-
Many)

3.50 0.22
[−0.19, 0.89]

0.22
[0, 0.89]

0.20
[−0.31, 0.84]

0.22
[0, 0.84]

LL1 LH1 3.57 0.25
[−0.15, 1.16]

0.25
[0, 1.16]

0.25
[−0.12, 1.2]

0.25
[0, 1.2]

LL1, HL1 LH1 3.57 0.43
[−0.14, 1.22]

0.43
[0.02, 1.22]

0.44
[−0.14, 1.27]

0.44
[0.02, 1.27]

LL1 LH1

(One-to-
Many)

3.57 0.24
[−0.1, 1.14]

0.24
[0, 1.14]

0.21
[−0.23, 1.07]

0.23
[0, 1.07]

LL1 HH1 2.95 0.13
[−0.63, 0.69]

0.16
[0, 0.69]

0.13
[−0.61, 0.68]

0.16
[0, 0.68]

LL1, HL1, LH1 HH1 2.95 0.43
[−0.07, 1.03]

0.43
[0, 1.03]

0.44
[−0.05, 1.05]

0.44
[0, 1.05]

LL1 HH1

(One-to-
Many)

2.95 0.12
[−0.57, 0.65]

0.16
[0, 0.65]

0.11
[−0.53, 0.55]

0.13
[0, 0.55]

LL2 HL2 4.39 0.12
[−0.01, 0.58]

0.12
[0, 0.58]

0.11
[−0.03, 0.53]

0.11
[0, 0.53]

LL2, LH2 HL2 4.39 0.12
[−0.16, 0.60]

0.13
[0, 0.60]

0.12
[−0.14, 0.56]

0.12
[0.12, 0.56]

LL2 HL2

(One-to-
Many)

4.39 0.11
[−0.01, 0.58]

0.12
[0, 0.58]

0.09
[−0.41, 0.46]

0.10
[0, 0.46]

LL2 LH2 4.49 0.10
[−0.36, 0.54]

0.11
[0, 0.54]

0.12
[−0.36, 0.52]

0.12
[0, 0.52]

LL2, HL2 LH2 4.49 0.13
[−0.24, 0.65]

0.13
[0, 0.65]

0.12
[−0.29, 0.55]

0.12
[0, 0.55]

LL2 LH2

(One-to-
Many)

4.49 0.12
[−0.30, 0.60]

0.12
[0, 0.60]

0.10
[−0.36, 0.47]

0.10
[0, 0.47]

LL2 HH2 4.33 0.03
[−0.10, 0.30]

0.03
[0, 0.30]

0.03
[−0.19, 0.25]

0.03
[0, 0.25]

LL2, HL2, LH2 HH2 4.33 0.12
[−0.01, 0.66]

0.12
[0, 0.66]

0.09
[−0.39, 0.65]

0.11
[0, 0.65]

LL2 HH2

(One-to-
Many)

4.33 0.03
[−0.1, 0.37]

0.03
[0, 0.37]

0.02
[−0.35, 0.25]

0.02
[0, 0.26]



52

Table 4.4: Entropy Reduction (bpc) - Pathology

Input Output Original L1 L1+SBE L2 L2+SBE

LL1 HL1 3.09 0.22
[−0.01, 0.77]

0.23
[0, 0.77]

0.23
[−0.09, 0.77]

0.23
[0, 0.77]

LL1, LH1 HL1 3.09 0.25
[−0.04, 0.81]

0.26
[0, 0.81]

0.26
[−0.04, 0.81]

0.26
[0, 0.81]

LL1 HL1

(One-to-
Many)

3.09 0.22
[−0.11, 0.76]

0.23
[0, 0.76]

0.22
[−0.06, 0.76]

0.22
[0, 0.76]

LL1 LH1 3.10 0.27
[−0.02, 0.80]

0.27
[0, 0.80]

0.28
[−0.01, 0.80]

0.28
[0, 0.8]

LL1, HL1 LH1 3.10 0.31
[0, 0.86]

0.32
[0, 0.86]

0.32
[0, 0.87]

0.32
[0, 0.87]

LL1 LH1

(One-to-
Many)

3.10 0.27
[−0.01, 0.79]

0.27
[0, 0.79]

0.27
[−0.02, 0.79]

0.27
[0, 0.79]

LL1 HH1 3.28 0.02
[−0.01, 0.09]

0.02
[0, 0.09]

0.02
[−0.04, 0.09]

0.02
[0, 0.09]

LL1, HL1, LH1 HH1 3.28 0.14
[0, 0.24]

0.14
[0, 0.24]

0.14
[0, 0.25]

0.14
[0, 0.25]

LL1 HH1

(One-to-
Many)

3.28 0.02
[0, 0.09]

0.02
[0, 0.09]

0.02
[−0.02, 0.09]

0.02
[0, 0.09]

LL2 HL2 3.53 0.16
[−0.31, 0.50]

0.17
[0, 0.50]

0.16
[−0.03, 0.51]

0.17
[0, 0.51]

LL2, LH2 HL2 3.53 0.16
[−0.15, 0.55]

0.17
[0, 0.55]

0.15
[−0.43, 0.57]

0.18
[0, 0.57]

LL2 HL2

(One-to-
Many)

3.53 0.15
[−0.02, 0.48]

0.15
[0, 0.48]

0.17
[−0.01, 0.51]

0.17
[0, 0.51]

LL2 LH2 3.54 0.17
[−0.06, 0.49]

0.18
[0, 0.49]

0.18
[−0.01, 0.49]

0.18
[0, 0.49]

LL2, HL2 LH2 3.54 0.21
[−0.02, 0.59]

0.21
[0, 0.59]

0.20
[−0.03, 0.59]

0.20
[0, 0.59]

LL2 LH2

(One-to-
Many)

3.54 0.17
[−0.01, 0.48]

0.17
[0, 0.48]

0.18
[−0.01, 0.52]

0.18
[0, 0.52]

LL2 HH2 3.70 0.06
[−0.05, 0.20]

0.06
[0, 0.20]

0.06
[−0.01, 0.19]

0.06
[0, 0.19]

LL2, HL2, LH2 HH2 3.70 0.16
[−0.03, 0.48]

0.16
[0, 0.48]

0.17
[−0.01, 0.49]

0.17
[0, 0.49]

LL2 HH2

(One-to-
Many)

3.70 0.03
[−0.22, 0.15]

0.04
[0, 0.15]

0.06
[−0.01, 0.20]

0.06
[0, 0.20]
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Table 4.5: Entropy Reduction (bpc) - Graphics

Input Output Original L1 L1+SBE L2 L2+SBE

LL1 HL1 0.53 0.07
[−0.37, 2.15]

0.10
[0, 2.15]

0.15
[−0.35, 2.46]

0.15
[0, 2.46]

LL1, LH1 HL1 0.53 0.20
[−0.21, 2.62]

0.21
[0, 2.62]

0.16
[−0.30, 2.48]

0.17
[0, 2.48]

LL1 HL1

(One-to-
Many)

0.53 0.19
[−0.28, 2.60]

0.19
[0, 2.60]

0.12
[−0.48, 2.04]

0.13
[0, 2.04]

LL1 LH1 0.55 0.17
[−0.18, 2.50]

0.18
[0, 2.50]

0.16
[−0.34, 2.39]

0.16
[0, 2.39]

LL1, HL1 LH1 0.55 0.19
[−0.21, 2.55]

0.19
[0, 2.55]

0.18
[−0.27, 2.53]

0.18
[0, 2.53]

LL1 LH1

(One-to-
Many)

0.55 0.18
[−0.27, 2.40]

0.18
[0, 2.40]

0.13
[−0.46, 1.94]

0.13
[0, 1.94]

LL1 HH1 0.45 0.10
[−0.12, 1.71]

0.10
[0, 1.71]

0.08
[−0.18, 1.48]

0.08
[0, 1.48]

LL1, HL1, LH1 HH1 0.45 0.13
[−0.08, 2.19]

0.13
[0, 2.19]

0.17
[−0.13, 2.23]

0.17
[0, 2.23]

LL1 HH1

(One-to-
Many)

0.45 0.12
[−0.27, 2.15]

0.12
[0, 2.15]

0.04
[−0.66, 1.25]

0.06
[0, 1.27]

LL2 HL2 0.94 0.17
[−0.33, 2.49]

0.18
[0, 2.49]

0.06
[−0.45, 2.34]

0.12
[0, 2.34]

LL2, LH2 HL2 0.94 0.19
[−0.36, 2.86]

0.19
[0, 2.86]

0.16
[−0.45, 2.44]

0.18
[0, 2.44]

LL2 HL2

(One-to-
Many)

0.94 0.16
[−0.27, 2.32]

0.16
[0, 2.32]

0.15
[−0.91, 2.36]

0.16
[0, 2.36]

LL2 LH2 0.96 0.22
[−0.30, 2.35]

0.22
[0, 2.35]

0.14
[−0.37, 2.04]

0.15
[0, 2.04]

LL2, HL2 LH2 0.96 0.18
[−0.34, 2.7]

0.19
[0, 2.7]

0.18
[−0.34, 2.59]

0.18
[0, 2.59]

LL2 LH2

(One-to-
Many)

0.96 0.15
[−0.29, 2.39]

0.15
[0, 2.39]

0.14
[−0.43, 2.28]

0.16
[0, 2.28]

LL2 HH2 0.86 0.05
[−0.57, 2.14]

0.10
[0, 2.14]

0.05
[−0.62, 2.06]

0.08
[0, 2.06]

LL2, HL2, LH2 HH2 0.86 0.19
[−0.40, 2.69]

0.19
[0, 2.69]

0.03
[−0.67, 3.02]

0.12
[0, 3.02]

LL2 HH2

(One-to-
Many)

0.86 0.06
[−0.68, 2.04]

0.08
[0, 2.04]

0.06
[−1.07, 2.21]

0.09
[0, 2.21]
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Figure 4.12: Distributions of entropy reduction over the natural dataset for subbnads
in the 1st decomposition level. Solid and dashed lines represent networks trained
with L1 and L2 loss, respectively.
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Figure 4.13: Distributions of entropy reduction over the natural dataset for subbnads
in the 2nd decomposition level. Solid and dashed lines represent networks trained
with L1 and L2 loss, respectively.
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Figure 4.14: Distributions of entropy reduction over the pathology dataset for subb-
nads in the 1st decomposition level. Solid and dashed lines represent networks
trained with L1 and L2 loss, respectively.
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Figure 4.15: Distributions of entropy reduction over the pathology dataset for subb-
nads in the 2nd decomposition level. Solid and dashed lines represent networks
trained with L1 and L2 loss, respectively.
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Figure 4.16: Distributions of entropy reduction over the graphics dataset for subb-
nads in the 1st decomposition level. Solid and dashed lines represent networks
trained with L1 and L2 loss, respectively.
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Figure 4.17: Distributions of entropy reduction over the graphics dataset for subb-
nads in the 2nd decomposition level. Solid and dashed lines represent networks
trained with L1 and L2 loss, respectively.

4.3.1 CNN Prediction Examples

In this section, several visual examples are given to demonstrate the efficacy

of the proposed CNN prediction method. For simplicity, we only show results for

networks which were trained using L1 loss on D1. Within each figure, the entropy

of the original coefficients and prediction residuals are provided for comparison.

In Figures 4.18 through 4.23, we look at examples from the natural dataset. In

general, we see that all networks are capable of effectively recovering the signifi-

cant structural information within a subband. Noticeable differences in prediction
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performance occur when looking at the ability to correctly predict signs, as well as

capture subtle textural details contained within small magnitude coefficients.

In Figures 4.18 through 4.20, incorrect sign prediction by the one-to-one and one-

to-many models results in poor prediction results and low entropy reductions, while

the many-to-one model produces good sign predictions and high entropy reductions.

Issues related to sign prediction appear to occur primarily in the HH1 subband. We

note that the nature of this incorrect sign prediction is largely uniform over a given

subband prediction, where nearly all predicted values may have the opposite sign

of the original coefficients. This may be attributed to the non-shift invariance of

the DWT, where shifting of a signal can result in completely different subband

coefficients. This phenomenon is demonstrated in Figure 4.24. In this example, two

images are cropped from the same image, the only difference being a 1 pixel shift

in the row dimension during cropping. While the images are virtually identical,

the resulting subband after decomposition show prominent structural, as well as

sign, differences. In the many-to-one mode, having access to information within

neighboring detail subbands may provide contextual information that allows the

network to better compensate for this effect.

In Figures 4.21 through 4.23, the ability of the many-to-one model to effectively

recover small magnitude coefficients is demonstrated. This is most apparent in

Figure 4.23, in which substantial improvements are seen across all subbands.
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Figure 4.18: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.19: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.20: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.21: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.22: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.23: Example prediction from the natural dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Image A

DWT(Image A)

Image B

DWT(Image B)

Figure 4.24: Demonstration of the non-shift invariance of the DWT by looking at the
DWT of two image crops which only differ by a 1 pixel shift in the row dimension.

Figures 4.25 through 4.28 gives prediction examples from the pathology dataset.

The results in Table 4.4 implied that no benefit may be seen by using the many-

to-one prediction model on pathology images, except for on the HH1 subband. We

see this in the examples provided below, where in all cases, the many-to-one model

produced nearly identical predictions to the one-to-one and one-to-many models on

HL1 and LH1.

The examples in Figures 4.25 through 4.27 demonstrates the noise contamination

in HH1 mentioned in Section 4.1.3. While the network does not learn the noise,

it does learn the banding within the noise; this banding is likely the result of a

scanning procedure used to capture the images. By learning this banding, the

network is able to achieve modest entropy reductions. In Figure 4.28 we see an
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example in which structure does exist within the HH1 subband. All networks do a

poor job of predicting this structure, which is likely results from a lack of training

examples from which to learn.
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Figure 4.25: Example prediction from the pathology dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.26: Example prediction from the pathology dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.27: Example prediction from the pathology dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.28: Example prediction from the pathology dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.

Figures 4.29 through 4.34 provide several examples from the graphics dataset.

Between networks, we see that predictions made by the one-to-one network for

HL1 containing a glowing effect around edges. This is likely the result of network

weights which did not converge well, which agrees with our observations in 4.2. In

all examples, networks are able to sufficiently capture structural information. The

textural details which gave the many-to-one network the largest advantage on the

natural dataset are not present in the graphics dataset. This likely contributes to it

having similar performance to the one-to-one and one-to-many models in this case.
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Figure 4.29: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.30: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.31: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.



75

LL
1

HL
1

LH
1

HH
1

Original

Coefficients

HL
1
:3.48

LH
1
:3.68

HH
1
:3.23

One-to-One

Prediction

One-to-Many

Prediction

Many-to-One

Prediction

One-to-One

Residual

HL
1
:2.89

LH
1
:2.62

HH
1
:2.78

One-to-Many

Residual

HL
1
:2.51

LH
1
:2.55

HH
1
:2.63

Many-to-One

Residual

HL
1
:2.42

LH
1
:2.47

HH
1
:2.36

Figure 4.32: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.33: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.
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Figure 4.34: Example prediction from the graphics dataset of subbands within D1.
The entropy of the original coefficients, and prediction residuals, are provided below
each corresponding column.

4.4 Baseline Prediction Framework

A baseline prediction framework is now developed, guided by the results obtained

throughout this section. For this, we look to minimize the potential bit-rate of the

entire image, and so we must now consider bit-rate in bits-per-pixel (bpp). Since

the total compressed file consists of compressed data from multiple subbands, we

must scale the entropy reduction of each subband by its relative contribution to

the full image codestream to obtain bit-rate reduction in bits-per-pixel (bpp). The

average relative contribution for each detail subband in the first two decomposition

levels is given in Table 4.6, where compressed data from test images within the

natural, pathology, and graphics datasets are used to generate statistics. With these

values, along with those provided in Tables 4.3-4.5, we estimate the potential bit-rate

reduction of each proposed framework using Equation 4.3
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∆̂bpp = rHL1CHL1+rLH1CLH1+rHH1CHH1+rHL2CHL2+rLH2CLH2+rHH2CHH2 (4.3)

where rx denotes the relative contribution of subband x to the compressed bitstream,

and Cx denotes the bit-ate reduction of subband x in bpc.

For each proposed framework, we are limited to which prediction models may be

used in conjunction, as well as the order of their application. We may understand

the first point by observing that, when the many-to-one model is used for both

HL and LH prediction, the framework will not be reversible. This is due to the

conflicting dependency on information used to generate each prediction. The second

point follows the first in that, if we wish to perform many-to-one prediction at the

decoder, we must first reconstruct the subbands used in making the prediction.

With these points in mind, we consider the prediction frameworks given in Table

4.7 and detailed in Algorithms 5 - 8. The resulting potential bit-rate reduction for

each is given in Table 4.8. Unsurprisingly, the frameworks which employ many-to-

one prediction have the high potential bit-rate reduction. In particular, the MO-

OO-MO framework gives the best results for natural and pathology data, while the

OO-MO-MO framework gives the best results for graphics images. The difference in

potential bit-rate reduction between these two frameworks is negligible, as a result

we choose MO-OO-MO as a baseline.

Table 4.6: Subband Relative Codestream Contributions

Subband Natural Pathology Graphics

HL1 0.240 0.233 0.150
LH1 0.243 0.238 0.149
HH1 0.204 0.257 0.130
HL2 0.075 0.064 0.076
LH2 0.076 0.064 0.078
HH2 0.075 0.070 0.071
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Table 4.7: Prediction Frameworks

Framework HL LH HH

OO-OO-OO One-to-One One-to-One One-to-One
MO-OO-MO Many-to-One One-to-One Many-to-One
OO-MO-MO One-to-One Many-to-One Many-to-One
OM-OM-OM One-to-Many One-to-Many One-to-Many

Table 4.8: Estimated Average Bit-rate Reduction (∆̂bpp)

Framework Natural Pathology Graphics

OO-OO-OO 0.171 0.149 0.043
MO-OO-MO 0.275 0.195 0.052
OO-MO-MO 0.276 0.199 0.048
OM-OM-OM 0.166 0.148 0.037

Algorithm 5 OO-OO-OO CNNenc and CNNdec procedures
1: procedure CNNencn (LLn,HLn,LHn,HHn)

2: ĤLn ← CNNLL→HL(LLn)

3: HLE
n ← SBE(HLn, ĤLn)

4: L̂Hn ← CNNLL→LH(LLn)

5: LHE
n ← SBE(LHn, L̂Hn)

6: ĤHn ← CNNLL→HH(LLn)

7: HHE
n ← SBE(HHn, ĤHn)

8: end procedure

9:

10: procedure CNNdecn (LLn,HLE
n ,LHE

n ,HHE
n )

11: ĤLn ← CNNLL→HL(LLn)

12: HLn ← SBD(HLE
n , ĤLn)

13: L̂Hn ← CNNLL→LH(LLn)

14: LHn ← SBD(LHE
n , L̂Hn)

15: ĤHn ← CNNLL→HH(LLn)

16: HHn ← SBD(HHE
n , ĤHn)

17: end procedure



80

Algorithm 6 MO-OO-MO CNNenc and CNNdec procedures
1: procedure CNNencn (LLn,HLn,LHn,HHn)

2: L̂Hn ← CNNLL→LH(LLn)

3: LHE
n ← SBE(LHn, L̂Hn)

4: ĤLn ← CNNLL,LH→HL(LLn, LHn)

5: HLE
n ← SBE(HLn, ĤLn)

6: ĤHn ← CNNLL,HL,LH→HH(LLn, HLn, LHn)

7: HHE
n ← SBE(HHn, ĤHn)

8: end procedure

9:

10: procedure CNNdecn (LLn,HLE
n ,LHE

n ,HHE
n )

11: L̂Hn ← CNNLL→LH(LLn)

12: LHn ← SBD(LHE
n , L̂Hn)

13: ĤLn ← CNNLL,LH→HL(LLn, LHn)

14: HLn ← SBD(HLE
n , ĤLn)

15: ĤHn ← CNNLL,HL,LH→HH(LLn, HLn, LHn)

16: HHn ← SBD(HHE
n , ĤHn)

17: end procedure

Algorithm 7 OO-MO-MO CNNenc and CNNdec procedures
1: procedure CNNencn (LLn,HLn,LHn,HHn)

2: ĤLn ← CNNLL→HL(LLn)

3: HLE
n ← SBE(HLn, ĤLn)

4: L̂Hn ← CNNLL,HL→LH(LLn, HLn)

5: LHE
n ← SBE(LHn, L̂Hn)

6: ĤHn ← CNNLL,HL,LH→HH(LLn, HLn, LHn)

7: HHE
n ← SBE(HHn, ĤHn)

8: end procedure

9:

10: procedure CNNdecn (LLn,HLE
n ,LHE

n ,HHE
n )

11: ĤLn ← CNNLL→HL(LLn)

12: HLn ← SBD(HLE
n , ĤLn)

13: L̂Hn ← CNNLL,HL→LH(LLn, HLn)

14: LHn ← SBD(LHE
n , L̂Hn)

15: ĤHn ← CNNLL,HL,LH→HH(LLn, HLn, LHn)

16: HHn ← SBD(HHE
n , ĤHn)

17: end procedure
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Algorithm 8 OM-OM-OM CNNenc and CNNdec procedures
1: procedure CNNencn (LLn,HLn,LHn,HHn)

2: ĤLn, L̂Hn, ĤHn ← CNNLL→HL,LH,HH(LLn)

3: HLE
n ← SBE(HLn, ĤLn)

4: LHE
n ← SBE(LHn, L̂Hn)

5: HHE
n ← SBE(HHn, ĤHn)

6: end procedure

7:

8: procedure CNNdecn (LLn,HLE
n ,LHE

n ,HHE
n )

9: ĤLn, L̂Hn, ĤHn ← CNNLL→HL,LH,HH(LLn)

10: HLn ← SBD(HLE
n , ĤLn)

11: LHn ← SBD(LHE
n , L̂Hn)

12: HHn ← SBD(HHE
n , ĤHn)

13: end procedure

14:

4.5 Compression Performance

Using the proposed model outlined in Section 3, and the baseline CNN pre-

diction framework given in Section 4.4, we implement an end-to-end encoder and

decoder. The compression performance of this implementation is compared with

current standards, as well as state of the art methods.

All compression experiments are performed as follows: Test images consist of

2048×2048 8-bit grayscale images stemming from the natural, pathology, and graph-

ics test image sets discussed in Section 4.1.3. Each image is broken down into sub-

bands using a 5-level integer 5/3 DWT. Encoding and decoding is performed in

accordance with Algorithm 1 and 3, respectively, with the CNNencn and CNNdecn

procedures given by Algorithm 6. Entropy coding is done using the context driven

binary arithmetic corder, as implemented in OpenJPEG [31]. While OpenJPEG

produces JPEG2000 compliant codestreams, our modified version is not JPEG2000

compliant. Here, OpenJPEG is only used for its arithmetic coder and ability to

produce a compressed file.

The results of these experiments are given in Table 4.9. For natural imags, the

proposed method achieved an average bit-rate which is 7.6%, 5.8%, 0.6%, and 1.7%

lower than Lossless JPEG2000, JPEG-LS, CALIC, and FLIF, respectively; while
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GLICBAWLS achieves a bit-rate which is 1.2% lower than the proposed method.

For pathology images, the proposed method sees bit-rate reductions of 5.1% and

3.9% over Lossless JPEG2000 and JPEG-LS, respectively; CALIC, GLICBAWLS,

and FLIF achieve bit-rates which are lower than the proposed method by 1.9%,

5.0%, and 1.9%, respectively. For graphics images, the proposed method achieves

bit-rate reductions of 25.9% over Lossless JPEG2000 and GLICBAWLS, but results

in a bit-rate which is 17.5%, 32.5%, and 42.5% higher than JPEG-LS, CALIC, and

FLIF, respectively.

While the proposed method achieves near state of the art performance for nat-

ural images, its performance may be considered average for pathology and graphics

images. This may be attributed to a reduced level of structural information within

the pathology and graphics images, leading to wavelet subbands with less structure.

While the natural images contain complex structure which leads to rich content

within wavelet subbands, the pathology and graphics images generally contain large

smooth or constant intensity regions, leading to a reduced amount of exploitable

information.

Table 4.9: Compression Performance (bpp)

Method Natural Pathology Graphics

Lossless J2K 3.66 3.36 0.54
JPEG-LS 3.59 3.32 0.33
CALIC 3.40 3.13 0.27

GLICBAWLS 3.34 3.03 0.54
FLIF 3.44 3.13 0.23

Proposed 3.38 3.19 0.40

The encoding and decoding time for each method is provided in Table 4.10;

we additionally provide the encoding and decoding throughput, measured in Mega-

Pixels per second (MPixels/s). For the proposed method, the CPU+GPU config-

uration uses the GPU for CNN prediction and the CPU for all other tasks. The

CPU Only implementation performs CNN prediction using the CPU, along with all

other tasks. It should be noted that the encoding and decoding for a given method
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will be effected by its implementation. For this reason, the values provided should

not be considered as strict measures of complexity.

Table 4.10: Encoding and Decoding Time (ms) and Throughput (MPixels/s)

Method Encoding
Time

Decoding
Time

Encoding
Through-
put

Decoding
Throughput

Lossless J2K 1340 641 3.13 6.54
JPEG-LS 254 236 16.50 17.75
CALIC 1290 1260 3.25 3.33
GLICBAWLS 170827 170865 0.02 0.02
FLIF 17977 1300 0.23 3.23
Proposed
(CPU+GPU)

1831 1132 2.29 3.70

Proposed
(CPU Only)

12882 12183 0.33 0.34

For Lossless JPEG2000, JPEG-LS, GLICBAWLS, and FLIF, compression exper-

iments were ran on a machine running Ubuntu 16.04.4 LTS, with Intel(R) Xeon(R)

E5-2699A CPUs, and Nvidia Tesla P100 GPU. For CALIC, only windows bina-

ries were available, these experiments were ran on a machine running Windows

10.0.17134, with Intel(R) Core(TM) i5-4670K CPU.
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CHAPTER 5

CONCLUSION

In this thesis, we proposed a lossless compression framework which incorporates

CNN s for prediction of wavelet coefficients. Multiple CNN prediction frameworks

were assess for usage with natural, pathology, and graphics image data. From these, a

baseline prediction framework was proposed by analyzing optimal potential bit-rate

rate reductions of each framework. Using this framework, an end-to-end implemen-

tation was developed, and compared with current standards, as well as state of the

art image compression techniques. In these experiments, we found that the proposed

model produces bit-rates which compete strongly with state of the art techniques

for natural images. Weaker, but still competitive, performance was seen in models

trained for pathology and graphics images. Additionally, the proposed model has

a computational complexity which is practical, even when implemented using only

CPUs.

In future work, the proposed model can be extended to multi-component imagery

(e.g. RGB, YCbCr, or hyperspectral). With these, a CNN prediction framework

may be developed which employs cross-component prediction. The proposed model

may also be extended to lossy image compression. For this we must study the

effects of quantization on CNN prediction, then a rate allocation model may be

developed which takes into consideration the information required for prediction at

the decoder.
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