Functional programming interface
for parallel and distributed computing

|. Petriakov |. Gankevich

Saint Petersburg State University

September 2021

Motivation

e There is no universal low-level representation of distributed
computations.

e There is no high-level interface for distributed computing in functional
languages.

e Existing solutions do not provide automatic fault tolerance for both slave
and master nodes.

Parallel — several processor cores of single cluster node.
Distributed — several cluster nodes.

2/11

From sync. call stack to async. call stack (kernels)

Kernel = data + code + result of the computation.

int nested(int a) { struct Nested: public Kernel {
return 123 + a; int result;
} int a;

Nested(int a): a(a) {}
void act() override {
result = a + 123;
async_return();

}
i

async_call push child kernel to the queue
async_return push current kernel to the queue
async_message send a kernel to another one via the queue

3/11

From sync. call stack to async. call stack (kernels)

void main() { struct Main: public Kernel {
// code before void act() override {
int result = nested(); // code before
// code after async_call(new Nested);
print(result);
} void react(Kernel* child) override {

int result = ((Nested*)child)->result;
// code after

print(result);

async_return();

}
b

void main() {
async_call(new Main);
wait();

}

4/11

Cluster scheduler architecture

Daemon process:

CPUO

Processor Process Network
queue queue queue

[[

[CPU 1][Child] NIC 1

e Run applications in child
processes.

e Route kernels between application
processes running on different
cluster nodes.

e Maintain a list of available cluster

nodes.

Application process:

[CPU 0] [Parent]
|
[Processor] [Process] async_call
queue L async_return

async_message

CPU 1

push child kernel to the queue
push current kernel to the queue
send a kernel to another one via
the queue

5/11

Fault tolerance

e Assumption: main kernel has only one child kernel at a time.

e Every step kernel (a child of main) has a copy of the main.

e Scheduler ensures that main and step are on different cluster nodes.
e Every step is also appended to the local log file.

Failure Resolution
kernel Child 1 resend Child 1 to the remaining nodes
Child 2 resend Child 2 to the remaining nodes
Step resend Step to the remaining nodes
kernel Main restore Main from the copy
/ N Main and Step restore Main and Step from the log

k I 1 k I 2 failure of multiple cluster nodes, HPCS'17, 2017.
erne erne ® |. Gankevich, Yu. Tipikin, V. Korkhov, V. Gaiduchok, A. Degtyarev, A. Bogdanov Master node

fault tolerance in distributed big data processing clusters, International Journal of Business
Intelligence and Data Mining, 2017.

[Chlld] [Chlld] ® |. Gankevich, Yu. Tipikin, V. Korkhov Subordination: Providing resilience to simultaneous

6/11

http://dx.doi.org/10.1109/HPCS.2017.126
http://dx.doi.org/10.1109/HPCS.2017.126
http://dx.doi.org/10.1504/IJBIDM.2017.10007764
http://dx.doi.org/10.1504/IJBIDM.2017.10007764

Kernel and queue definition

enum class states {upstream, downstream, point_to_point};

class kernel {
public:
virtual void act();
virtual void react(kernel* child);
virtual void write(buffer§s out) const;
virtual void read(buffer§ in);
kernel* parent = nullptr;
kernel* target = nullptr;
states state = states::upstream;

b

class queue {
public:
void push(kernel* k);

b

7/11

Automatic parallelism

The idea: evaluate arguments in parallel (one kernel for each argument).

(define (map proc 1lst) "Parallel map."
(if (null? 1st) lst
(cons (proc (car 1st)) (map proc (cdr 1st)))))
(define (fold proc init 1lst) "Sequential fold."
(if (null? 1lst) init
(fold proc (proc (car 1st) init) (cdr 1st))))
(define (do-fold-pairwise proc 1st)
(if (null? 1st) '()
(if (null? (cdr 1st)) 1st
(do-fold-pairwise proc
(cons (proc (car 1st) (car (cdr 1lst)))
(do-fold-pairwise proc (ecdr (cdr 1st))))))))
(define (fold-pairwise proc 1lst) "Parallel pairwise fold."
(car (do-fold-pairwise proc lst)))

8/11

Guile with automatic parallelism (synthetic benchmark)

map (Guile)
—+—— map (Guile + kernels)
fold (Guile)
—+F— fold (Guile + kernels)
fold-pairwise (Guile)
—O— fold-pairwise (Guile + kernels)

Time, s

No. of threads

9/11

Conclusion and future work

Kernels provide
e standard way of expressing parallel and distributed programme parts,
e automatic fault tolerance for master and worker nodes and
e automatic load balancing via cluster scheduler.

Arguments-based parallelism provide
¢ high-level programming interface for clusters and single nodes,

e conveniently hides the shortcomings of parallel and distributed
computations.

10/11

Copyright © 2021 Ivan Petriakov, lvan Gankevich i.gankevich@spbu.ru.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. The copy of the license is available at
https://creativecommons.org/licenses/by-sa/4.0/.

11/11

mailto:i.gankevich@spbu.ru
https://creativecommons.org/licenses/by-sa/4.0/

